Der Klang von Akustik- und Elektrogitarre im Vergleich

DerOnkel

Power-User
26 Nov 2004
294
16
Ellerau
Man nimmt seine Gitarre zur Hand, schlÀgt eine Saite an und hört...

...und was man da hört, kann ganz unterschiedlich sein.

Jeder Elektrogitarrist weiß, daß zwischen dem verstĂ€rkten Klang der Gitarre und ihrem akustischen Klang Welten liegen. Es stellt sich die Frage, ob das nur an den Übertragungseigenschaften von Tonabnehmer, Elektronik und Lautsprecher liegt oder ob da noch mehr im Spiel ist? Muß das klangliche Ergebnis nicht gleich sein, wenn man den Klang mit einem guten Mikrofon abnimmt und dann auf den VerstĂ€rker gibt?

Die Antwort auf diese Fragen findet man, wenn man die Funktionsprinzipien von E- und A-Gitarre einmal gegenĂŒberstellt.

Sehen wir uns einmal die Übertragungskette der Instrumente an:

1. Am Anfang ist die Naturtonreihe

Den Anfang unserer Kette macht eine theoretische Konstruktion: Eine Quelle, die einen Grundton f0 und seine ganzzahligen Vielfachen mit gleichen Amplituden erzeugt. Es gilt dann

yn(t)=sin(2*pi*[n+1]*f0*t)

FĂŒr das gesamte Schallereignis gilt dann

y(t)=y0(t)+y1(t)+y2(t)+...yn(t)

wobei n von 0 bis Unendlich lÀuft. Ich möchte diese Quelle einmal als Naturtonquelle bezeichnen.

Eine solche Schallquelle gibt es in der Natur natĂŒrlich nicht, aber als Quelle eine Modells fĂŒr die Gitarre (und auch fĂŒr alle anderen Schallerzeuger) ist sie sehr gut geeignet.

2. Wo man hinlangt...

...spielt schon eine Rolle. Je nach dem an welcher Position man die Saite anschlĂ€gt, verĂ€ndert sich der Klang. Dabei gilt: Je weiter vom Steg entfernt in Richtung 12. Bund desto voller der Klang. DarĂŒber hinaus ergibt sich aus der Anschlagposition auch ein Kammfiltereffekt, der einzelne Harmonische und deren Vielfache teilweise total auslöschen kann. Hier ein Beispiel fĂŒr ein Filter, daß mit der Naturtonquelle gespeist wurde:

Anschlag_10.gif


Man erkennt, daß die 10. und 20. Harmonische vollstĂ€ndig fehlen. Bei eine Position von 25% wĂ€ren es dann die 4., 8., 12., usw.

3. Die Saite ist ein Filter...

Man kann jede Saite als ein Filter auffassen, welches bestimmte Frequenzen dĂ€mpft und andere wiederum betont. Es existieren also Resonanzen und Antiresonanzen. Die Lage dieser Resonanzen wird durch den Aufbau und die materielle Komposition der Saite bestimmt. Auch ihre Zugspannung dĂŒrfte hier eine Rolle spielen.

DarĂŒber hinaus hat jede Saite auch zwei Tiefpaßcharakteristiken. Die eine wird wieder von Material und Aufbau bestimmt, die zweite hĂ€ngt vom Alter und der Verschmutzung ab. Ihre Grenzfrequenz rutscht mit zunehmender Alterung nach unten. Also: Alte Saite=dumpf!

Dieses sehr komplizierte Filter generiert aus unserer Naturtonquelle den Klang der Saite. WĂŒrde die Saite dĂ€mpfungsarm aufgehĂ€ngt und wĂ€ren die beiden AufhĂ€ngungspunkte nicht miteinander verbunden. So wĂ€re das exakt der Klang, den wir hören könnten.

4. VerstÀrkung tut Not

Eine schwingende Saite zÀhlt nun nicht gerade zu den besonders lauten Schallerzeugern. Im Laufe der Geschichte wurden dann Dinge dazugebaut, die nur einen Zweck hatte: Das Schallereignis zu verstÀrken!

4.1 Die Akustische macht's mechanisch

Der Korpus einer guten akustischen Gitarre erfĂŒllt diese Aufgabe in der Regel sehr gut. Die Energie der Saitenschwingung wird ĂŒber die AufhĂ€ngung (Steg und Sattel) auf den Korpus ĂŒbertragen. Dieser gerĂ€t nun seinerseits in Schwingungen und seine OberflĂ€che wirkt wie die Membran eines Lautsprechers, welche die mechanische Energie in Schallenergie umwandelt. Der Korpus entzieht also den Saiten die Schwingungsenergie und es ist in der Theorie sogar denkbar, daß die Saitenschwingung schon abgeklungen ist, der Korpus aber noch nachschwingt.

Der Korpus selber verfĂŒgt ebenfalls ĂŒber Resonanzen und Antiresonanzen. Die FĂ€higkeit die mechanische Energie der Saitenschwingung zu ĂŒbernehmen, kann durch die sogenannte mechanische Konduktanz beschrieben werden. Letztendlich kann man sich Korpus und Hals mit den mechanischen BeschlĂ€gen ebenfalls als (sehr komplexes) Filter denken.

4.2 Elektriktrick

Eine Elektrogitarre schöpft ihr fast unendliches LautstĂ€rkepotential aus einem elektronischen VerstĂ€rker mit Lautsprecher. Bevor der jedoch arbeiten kann, muß die Saitenschwingung in ein elektrisches Signal umgewandelt werden. Diese Aufgabe ĂŒbernimmt in der Regel ein elektromagnetischer Tonabnehmer, welcher direkt unter den Saiten positioniert wird.

5. Der Raum nimmt Einfluß

Bevor die von einer Quelle ausgesendeten Schallwellen im Ohr des Zuhörers ankommen, mĂŒssen sie sich durch den Raum ausbreiten. Aus Sicht des Zuhörers muß man dabei zwischen direktem und indirektem Schall unterscheiden.

Schallwellen breiten sich grundsĂ€tzlich nur gradlinig aus. Der direkte Schall bewegt sich, wie der Name schon andeutet, direkt - das heißt auf dem kĂŒrzesten Weg - von der Quelle zum Zuhörer. Schallwellen, die eine andere Richtung nehmen, erreichen den Zuhörer normalerweise nicht. Treffen sie jedoch auf ein Hindernis, wie zum Beispiel eine Wand, so werden die Wellen nach dem Reflektionsgesetzt reflektiert. Dabei können auch frequenzabhĂ€ngige DĂ€mpfungen auftreten, die abhĂ€ngig von den Materialien dieser Hindernisse sind. Das Hindernis wirkt dabei auch als Filter und es entsteht eine Klangumformung. Auf diese Weise wird der Schall quasi umgeleitet und kann so doch noch - wenn auch indirekt - zum Zuhörer gelangen.

Hier ist jetzt auch eine Besonderheit des indirekten Schalls zu erkennen: Bedingt durch den lÀngeren Weg, ist dieser Schall um die Wegdifferenz verzögert, die wir als Echo wahrnehmen. Da sich der Schall vom Korpus ausgehend in alle Richtungen ausbreitet, treten in einem Raum eine Vielzahl von unterschiedlichen Verzögerungen auf, die alle mit einem eigenen Filter bewertet sind. Mehrfachreflektionen sind dabei nicht ungewöhnlich.

Neben diesem Effekt treten beim EmpfĂ€nger - dem Zuhörer - auch noch Auslöschungen oder VerstĂ€rkungen der Schallwellen auf, die durch die unterschiedlichen Laufzeiten der verschiedenen Wellen entstehen. Die Summe dieser Verzögerungen mit ihren klangumformenden Wirkungen versetzt uns in die Lage, aus dem Gehörten auf die RaumgrĂ¶ĂŸe und -ausstattung zu schließen. Diese Vielzahl von quasi diffusen Echos wird auch als Hall bezeichnet und stellt ein Charakteristikum fĂŒr den jeweiligen Raum dar. Der Raum Ă€ndert also den Klang, welcher von der Quelle abgestrahlt wird.

ZusĂ€tzlich zu den eben festgestellten Eigenschaften, ist das klangliche Empfinden auch noch von der Position des Zuhörers im Raum abhĂ€ngig. Wird sie verĂ€ndert, so Ă€ndern sich auch die Laufzeiten und Klangumformungen der empfangenen Schallwellen. Es ist daher sehr wohl möglich, daß zwei Menschen in einem Raum aufgrund verschiedener Hörpositionen den Klang unterschiedlich empfinden. Die akustischen Eigenschaften eines Raumes sind also sehr komplex und haben einen maßgeblichen Einfluß auf die Klangentstehung.

6 Das Ohr als Filter

Das menschliche Ohr ist vom Prinzip her so ausgelegt, daß es Frequenzen bis 25kHz empfangen kann. Diese Bandbreite ist jedoch vom Alter abhĂ€ngig. WĂ€hrend SĂ€uglinge noch ĂŒber die volle Bandbreite verfĂŒgen, hören 20 bis 30jĂ€hrige selten mehr als 18kHz. Alte Menschen mĂŒssen manchmal sogar mit 10kHz oder weniger auskommen. In diese Kategorie muß man auch den einen oder anderen (noch jungen) Musiker einordnet, dem der Marshall-Turm schon in frĂŒhen Jahren das Gehör "weggepustet" hat. Unser Ohr stellt damit ein Tiefpaßsystem dar, dessen Grenzfrequenz eine Funktion des Alters ist.
Das gleiche akustische Ereignis wird von zwei unterschiedlich alten Hörern folglich verschieden wahrgenommen. Damit ist schon die erste BegrĂŒndung dafĂŒr geliefert, warum Menschen einen Klang unterschiedlich empfinden.

Das menschliche Ohr hat jedoch noch eine weitere interessante Eigenschaft: Seine Empfindlichkeit. Das nÀchste Bild zeigt einen typischen Verlauf:

Ohrkurve.gif

Die Empfindlichkeitskurve des menschlichen Gehörs

Die Kurven geben an, welcher Schallpegel (hier in dB) in AbhĂ€ngigkeit der Frequenz im menschlichen Ohr den gleichen LautstĂ€rkeeindruck erzeugt. Bei 30 Hz liegt die Hörschwelle (0 Phon) bei einem Schallpegel von 67 dB. Bei 1 kHz nimmt das Ohr schon Pegel von 0 dB wahr. Seine grĂ¶ĂŸte Empfindlichkeit liegt in etwa bei 3 kHz. Die Schmerzschwelle von 120 Phon zeigt die obere Kurve. Auch hier ist noch ein frequenzabhĂ€ngiges Verhalten zu erkennen.

Es fĂ€llt auf, daß der Verlauf der einzelnen LautstĂ€rkeschwellen unterschiedlich ist. Daraus folgt, daß ein und dasselbe akustische Ereignis in AbhĂ€ngigkeit seiner LautstĂ€rke als unterschiedlicher Klang wahrgenommen wird. TatsĂ€chlich empfinden wir den Klang einer lauten Elektrogitarre als "voller". Es scheint, als ob mehr tiefe und hohe Töne vorhanden sind.
Um dieses Verhalten zu kompensieren, wird in der HiFi-Technik die sogenannte gehörrichtige LautstÀrkeeinstellung (Loudness) benutzt. Bei kleinen LautstÀrken werden die hohen und tiefen Frequenzen mehr betont. Auf diese Weise wird die Hörkurve kompensiert und man erhÀlt bei jeder LautstÀrke in etwa einen vergleichbaren Klangeindruck.

7 Das programierte Gehör - unser Gehirn

Neben diesen meßbaren Effekten sind noch ein paar psychologische EinflĂŒsse zu verzeichnen, die böse Zungen auch als Einbildung bezeichen wĂŒrden. Diese Effekte sind jedoch immer mit zusĂ€tzlichen visuellen Reizen verbunden. Dazu stellen wir uns eine kleines Gedankenexperiment in einem MusikgeschĂ€ft vor:

Unserem Probanden werden zwei gleiche Gitarren gleichen Typs (Les Paul, um ein Beispiel zu nennen) prĂ€sentiert, die von unterschiedlichen Herstellern stammen. Wir setzen dabei voraus, daß fĂŒr beiden Instrumente das gleiche Material verwendet wurde, sie also im weitesten Sinne als identisch oder vergleichbar zu bezeichnen sind. Der eine Hersteller heißt natĂŒrlich "Gibson" (wie könnte es anders sein?), der andere ist eine unbekannte Firma aus Asien, deren Produkt um die HĂ€lfte billiger ist.

Nun werden beide Instrumente vom selben Musiker an einem identischen Setup vorgefĂŒhrt. FĂŒr welches Instrument wird sich unser Kandidat wohl entscheiden?

"NatĂŒrlich klingt die Gibson besser!", wird er vermutlich mit dem Brustton der Überzeugung sagen und damit schnell seine Wahl treffen. Aber ist diese Wahl wirklich objektiv?

Auch wenn beide Instrumente wirklich einen identischen Klang abliefern, hat das No-Name-Produkt schlechte Karten, denn nur Gibson baut gute Gitarren, wie man es immer zu hören und zu lesen bekommt und gute Gitarre haben auch immer einen hohen Preis. HĂ€tte man diesen Test mit verbundenen Augen gemacht und nicht die Herstellernamen und Preise genannt, so wĂ€re der Ausgang des Experimentes völlig offen gewesen. Manchmal hören wir eben das, was wir hören wollen. Besonders, wenn unsere Meinung zu einem Thema durch geeignete suggestive Werbemaßnahmen in gewisser Weise "programmiert" wurde.

8 RĂŒckkopplungen durch den Raum

Jeder Gitarrist weiß, daß ab einer bestimmten LautstĂ€rke ein Effekt einsetzt, der als RĂŒckkopplung bezeichnet wird. Dabei regen die Schallwellen die Saiten und den Korpus der Gitarre zum Schwingen an. Im schlechtesten Fall ist auch der Tonabnehmer mikrofonisch und die Drahtwindungen beginnen ebenfalls zu schwingen. Die Gitarre beginnt zu "leben" und tritt ĂŒber den Raum in Wechselwirkung mit dem Lautsprecher.

Im besten (oder lautesten) Fall bildet sich eine konstante Schwingung mit maximaler LautstÀrke aus und man spricht von einer Mitkopplung. Wann und bei welcher Frequenz das geschieht, ist unter anderem von den akustischen Eigenschaften des Raumes und von der Position der Gitarre im Raum abhÀngig. Bedingt durch die verschiedenen Laufzeiten der Schallwellen können sich dabei sowohl Gegen- als auch Mitkopplungen ergeben. Sie verringern oder verstÀrken bestimmte Frequenzen selektiv.

Die Wirkung dieser RĂŒckkopplung ist grundsĂ€tzlich vorhanden. Der tatsĂ€chlich Einfluß steigt mit der LautstĂ€rke.

9 Akustik vs. Elektrik

Auch wenn man es auf den ersten Blick nicht glauben mag, bestehen zwischen der Klangverarbeitung von Elektro- und Akustikgitarre große Unterschiede. Betrachten wir zunĂ€chst einmal die Klangkette einer Akustikgitarre:

Klangkette-A.gif

Die Klangkette der akustischen Gitarre

Unmittelbar nach der Naturtonquelle kommt ein Kammfilter, deren Kammfrequenzen durch die Anschlagposition bestimmt werden. Danach folgt das Saitenfilter mit seinen spezifischen Resonanzen und den beiden Tiefpaßcharakteristiken. Anschließend gelangt das Signal in den Korpus, der ein weiteres Filter darstellt. Da er der Saite die Schwingungsenergie entzieht, wurde eine RĂŒckfĂŒhrung auf den Eingang des Saitenfilters vorgesehen. Aufgrund des negativen Vorzeichens an der Additionsstelle handelt es sich aus technischer Sicht um eine sogenannte Gegenkopplung.

Wird der Schall des Korpus durch ein Mikrofon oder einen Piezowandler abgenommen, so kommt noch ein elektronischer Block mit VerstĂ€rker, EffektgerĂ€ten und Lautsprecher hinzu. Da sie nicht zwingend vorhanden sein mĂŒssen, wurden sie gestrichelt dargestellt.

Vom Lautsprecher gelangt der Schall dann wieder ĂŒber den Raum zum Instrument zurĂŒck. Je nach rĂ€umlicher Anordnung von Instrument und Lautsprecher kann diese RĂŒckfĂŒhrung einen Gegen- oder Mitkopplung sein. Im letzteren Fall besteht die Gefahr einer sich aufbauenden Schwingung mit maximaler LautstĂ€rke (RĂŒckkopplung), welche im Extremfall zur Zerstörung des Instrumentes fĂŒhren kann. Diese RĂŒckkopplung hat bei der akustischen Gitarre natĂŒrlich den grĂ¶ĂŸten Einfluß auf den Korpus, da er sich aufgrund seiner Konstruktion leicht zum Schwingen anregen lĂ€ĂŸt.

Kommen wir jetzt zur Elektrogitarre. Auf den ersten Blick sieht die Klangkette recht Ă€hnlich aus. Wenn man jedoch genauer hinsieht, so offenbaren sich wesentliche Unterschiede, auf die ich im folgenden eingehen möchte. Zur besseren Übersicht wurden die Blöcke der Akustikgitarre in blau dargestellt.

Klangkette-E.gif

Die Klangkette der elektrischen Gitarre

Es fĂ€llt auf, daß hier zwei mit "Korpus" bezeichnete Filter existieren. Die BegrĂŒndung dafĂŒr ist einfach: Wenn der Korpus schwingt, geraten auch die Tonabnehmer in Schwingungen. Es Ă€ndert sich dann der Abstand zwischen Tonabnehmer und Saite, was eine Induktionsspannung zur Folge hat. Dieser Effekt ist bei einer massiven Korpuskonstruktion sicherlich nicht besonders erwĂ€hnenswert. Bei einer Jazzgitarre mit einer frei schwingenden Decke mag es da schon anders aussehen. Ob das Signal aus diesem Korpusfilter zur Saitenschwingung addiert oder subtrahiert wird, hĂ€ngt unter anderem vom Ruheabstand des Tonabnehmers zu den Saiten ab. Vermutlich wird die Phasenlage von der Frequenz abhĂ€ngen, sodas beide Möglichkeiten auftreten können.

Nach der Additionsstelle folgt ein weiteres Kammfilter, dessen Kammfrequenzen sowohl von der Position des Tonabnehmers als auch von seiner magnetischen Breite (Apertur) abhĂ€ngig ist. Die unterschiedlichen KlĂ€nge der einzelnen Tonabnehmerpositionen (z.B. bei der Strat) werden maßgeblich durch dieses Filter bestimmt. Wohlgemerkt handelt es sich hierbei nicht um ein elektronisches Filter. Die elektrischen Eigenschaften des Tonabnehmers spielen hier also keinerlei Rolle!

Die folgenden Bestandteile wie VerstĂ€rker und Raum nebst RĂŒckkopplung wurden bereits bei der Klangkette der akustischen Gitarre beschrieben. Hier ist lediglich zu bemerken, daß im VerstĂ€rkerblock auch die elektrische Wirkungen des Tonabnehmers und der Gitarrenelektronik enthalten sind.

Soweit eigentlich nicht Neues. Der eigentliche Unterschied erschließt sich einem nur, wenn man die Lage der beiden "AusgĂ€nge" betrachtet. Sie wurden mit "Out A" und "Out E" bezeichnet. Wenn man die wesentlichen mechanischen Elemente der Klangkette neu ordnet, kommt man zum folgenden Bild:

Kangformung_AvsE.gif

Akustischer (A) und elektrischer (E) Signalausgang einer Gitarre

Man erkennt, daß die beiden Signale E und A in gewisser Weise komplementĂ€r sind. Um diese Vermutung etwas genauer zu beleuchten, machen wir ein paar Vereinfachungen:

1. Wir vernachlĂ€ssigen die RĂŒckkopplung durch den Raum und
2. wir vernachlĂ€ssigen den Einfluß der Korpusschwingung auf den Tonabnehmerabstand.

Dadurch entfallen zwei Additionsstellen und ein Korpusblock. Jetzt noch ein Trick aus der Systemtechnik (Verschiebung des verbleibenden Korpusfilters hinter die Verzweigung) und wir erhalten ein recht einfaches Modell:

Kangformung_AvsE_2.gif

Vereinfachtes Modell der SignalausgÀnge einer Gitarre

Wer mit der Systemtheorie und WirkungsplĂ€nen vertraut ist, der kann jetzt ein wenig rechnen: Unter der Annahme, daß das Signal der Quelle In(s) ist lassen sich fĂŒr beide AusgĂ€nge jeweils eine Übertragungsfunktion (1), (2) angeben:

Kangformung_AvsE_Eq.gif

Verschiedene mechanische Übertragungsfunktionen der Gitarre

Besonders interessant ist jetzt das VerhĂ€ltnis von Akustik zu Elektrik (3). Es wird einzig von den Übertragungseigenschaften des Korpus bestimmt!

Aus diesen drei Formel kann man folgende allgemeine Schlußfolgerung ziehen:

Die akustische Gitarre liefert den durch den Korpus betonten Teil der Saitenschwingung und die Elektrogitarre liefert den Teil, der nicht durch den Korpus betont wird.

Die ideale Elektrogitarre hĂ€tte folglich eine nichtschwingfĂ€higen Korpus. Er soll nicht resonieren, um die Saitenschwingung nicht zu dĂ€mpfen. Die entprechende Übertragungsfunktion GKorpus hĂ€tte folglich bei allen Frequenzen einen Wert von 0!

In der Folge wÀre das akustische Signal

OutA=0

und

OutE=GAP*GSaite*In

Der starre Korpus einer Elektrogitarre liefert auch die ErklĂ€rung fĂŒr das, im Vergleich zur Akustikgitarre, lange Sustain. Die Saitenschwingung muß eben keine (oder nur wenig) Energie an den Korpus abgeben und kann so lĂ€nger schwingen.

Ein maximal schwingfĂ€higer Korpus fĂŒr eine Akustikgitarre hĂ€tte eine Übertragungsfunktion mit einem unendlichen Wert. Dann wird

OutE=0

und

OutA=GAP*GSaite*In

Die beiden extremen Anforderungen an den Korpus finden seinen Niederschlag in Konstruktion und Materialauswahl. Man wird kaum eine Akustikgitarre finden, deren Korpus aus den klassischen Korpushölzern einer Elektrogitarre (Mahagoni, Ahorn, Esche, Erle) gebaut wurde. Statt dessen wird hier gerne Fichte, Palisander und teilweise Ahorn verwendet.

Der Bau eines guten Resonanzkorpus ist in der Tat eine Meisterleistung, die nur wenige wirklich beherrschen. Einen massiven Korpus fĂŒr eine Elektrogitarre hingegen kann jeder Tischler zusammenschustern, so er denn ein ordentliches Tonholz ausgewĂ€hlt hat.

10 Fazit

Wer schon einmal versucht hat, eine Westerngitarre mit einem elektromagnetischen Tonabnehmer auszurĂŒsten, der wird vom Ergebnis in der Regel enttĂ€uscht gewesen sein. Warum das so sein muß, dĂŒrfte jetzt klar geworden sein. Statt des gewĂŒnschten OutA ĂŒbertragen wir OutE, welches darĂŒber hinaus noch mit einem zusĂ€tzlichen Kammfilter (Position und Breite) und der elektrischen Filterwirkung des Tonabnehmers bewertet wurde. Es klingt dann eben immer ein wenig "elektrisch".

Seit einiger Zeit gibt es fĂŒr Elektrogitarren sogenannte Akustiksimulatoren, die entweder als kleiner Bodentreter oder als Effekt in einem VerstĂ€rker verfĂŒgbar sind. Wenn man sich die Ergebnisse unserer Überlegungen ansieht wird klar, daß diese kleinen Kisten ganz große LĂŒgner sind.

Hochwertige Exemplare simulieren zwar den Korpus, sodas gilt

OutA'=OutE*G'Korpus*In

aber der störende Einfluß von Kammfilter und Tonabnehmer bleibt. DarĂŒber hinaus spielt auch noch der Eigenklang des Gitarrenkorpus eine Rolle. Eine geeignete Kompensation, welche fĂŒr jede E-Gitarre optimal ist, wird man nicht realisieren können. Das Ergebnis dieses "Fakes" bleibt also ein mehr oder weniger guter Kompromiß!

Wer also den akustischen Klang verstÀrken möchte, kommt nicht umhin, die mechanische Schwingung des Korpus durch einen geeigneten Sensor in eine elektrischen Spannung umzuwandeln.

Einige Elektrogitarren verfĂŒgen, neben den elektromagnetischen Tonabnehmern, auch noch ĂŒber piezoelektrische Sensoren. Sie sind dann tatsĂ€chlich in der Lage, das akustische Signal zu ĂŒbertragen. Allerdings darf man hier nicht vergessen, daß zwischen den Übertragungseigenschaften eines massiven E-Gitarrenkorpus und einem Resonanzkorpus einer Akustikgitarre Welten liegen. Eine Elektrogitarre ist eben darauf optimiert OutE zu maximieren, was automatisch zu einer Verringerung von OutA fĂŒhrt. Der akustische Klang einer massiven Les Paul ist also keinesfalls mit dem einer ordentlichen Westerngitarre zu vergleichen.

Akustische Gitarren mit eingebauten Tonabnehmern oder Mikrofonen sind klanglich auch nicht immer ĂŒberzeugend, denn um die AnfĂ€lligkeit fĂŒr RĂŒckkopplungen zu senken, wird ein solcher Korpus immer etwas steifer konstruiert. So richtig "voll" und "satt" klingen solche Instrumente dann nicht. Dieses fehlende Etwas lĂ€ĂŸt sich dann am VerstĂ€rker zufĂŒgen, sodas insgesamt schon ein gutes Ergebnis entstehen kann.

Ulf

(Die korrigierte und erweiterte Version dieses Artikels findet sich in der Knowledge-Base der Guitar-Letter)
 
Hallo Ulf,

ich habe in einer Spezifikation von Pickups gesehen, daß die relativ niedrige Resonanzfrequenzen haben, d.h. wenige kHz. Daher dĂŒrften bei einer E-Gitarre gerade die Oberwellen einer angeschlagenen Saite fehlen, die bei einer Akustik Gitarre den Klang ausmachen. Was meinst Du?
 
David ben Jesse":2nx8ahoh schrieb:
...Daher dĂŒrften bei einer E-Gitarre gerade die Oberwellen einer angeschlagenen Saite fehlen, die bei einer Akustik Gitarre den Klang ausmachen.
Ja, so kann man das in etwa sehen. Der Tonabnehmer ist in meinen Grafiken im Block "VerstĂ€rker" enthalten und begrenzt das Signal OutE natĂŒrlich zusĂ€tzlich.

Ulf
 
Hallo Ulf,

ich finde es gut, daß Du Dein Wissen veröffentlichst. Das beste wĂ€re eine eigene Website mit den Texten, Grafiken und jede Menge Klangbeispielen in mp3. So kannst Du Dir auch einen Namen machen...

Nur wĂ€re es gut, wenn Du das Ganze so gliederst, daß im ersten Kapitel jedermann alles versteht und in den weiteren Kapiteln die "Insider" auf ihren Genuß kommen.


viele GrĂŒĂŸe
Ralf
 
David ben Jesse":1o5uay10 schrieb:
Das beste wÀre eine eigene Website mit den Texten, Grafiken und jede Menge Klangbeispielen in mp3. So kannst Du Dir auch einen Namen machen...

Nur wĂ€re es gut, wenn Du das Ganze so gliederst, daß im ersten Kapitel jedermann alles versteht und in den weiteren Kapiteln die "Insider" auf ihren Genuß kommen.
Hinter diese kurzen Anforderung steht leider ein sehr umfangreiches Projekt, denn um alles wirklich verstehen zu können, ist doch eine Menge Grundlagenwissen aus Physik, Mathematik und Elektrotechnik notwendig. Mit meinen Guitar-Letters versuche ich diesen Ansatz ein wenig zu verfolgen, man kommt dabei jedoch leicht in Gefahr, den "normalen" Leser "abzuhÀngen". Das ganze gleicht ein wenig der Quadratur des Kreises.

Was die Sache mit dem Namen betrifft, ist "DerOnkel" schon seit einigen Jahren in mehreren Foren ein Begriff. Ich kann mir dafĂŒr zwar nichts kaufen, aber die RĂŒckmeldungen zeigen mir, daß ich mit meinen BeitrĂ€gen immer wieder eine Art Wissens- oder MarktlĂŒcke treffe.

Ulf
 
Ich habe vor einiger Zeit als Antwort einen Beitrag ĂŒber die Wellenausbreitung in der Gitarre geschrieben. Es ging dabei um den Unterschied von geschraubter oder geleimter Halsverbindung. Er paßt, so denke ich ganz gut hier her:

Wenn wir schon beim Thema Wellen und Reflektion sind, dann mĂŒssen wir das auch vollstĂ€ndig erledigen und auch den Begriff des Reflexionsfaktors einfĂŒhren. Jetzt wird es natĂŒrlich fĂŒr viele eng, denn nun betreten wir den Bereich der "finsteren" Physik.

Was geschieht, wenn wir eine Saite anschlagen?
  1. Auf der Saite bildet sich eine Welle aus, die von einem Ende zum anderen Ende lÀuft. Die Auslenkung der einzelnen Punkte oder Teile wird in AbhÀngigkeit von Ort und Zeit durch die sogenannte Wellengleichung beschrieben.
  2. An den beiden Enden wird die Welle reflektiert. Sie Ă€ndert also ihre Ausbreitungsrichtung. Unter der Annahme, daß diese beiden Punkte wirklich fest im Sinne von ruhend im Raum sind, betrĂ€gt der Reflexionsfaktor -1. Die Welle wird vollstĂ€ndig reflektiert und es bildet sich eine ungedĂ€mpfte stehende Welle aus.
  3. In der Praxis sind die Endpunkte jedoch keinesfalls starr miteinander verbunden. Sie sind also im gewissen Rahmen beweglich. In der Folge ist der Reflexionsfaktor dann ein wenig kleiner als 1. Wir nehmen als Beispiel mal -0,9 an. Das bedeutet, das unsere arme Welle mit jeder Reflexion 10% ihrer Energie "verliert". Folge: Die stehende Welle wird gedĂ€mpft und wird in endlicher Zeit abklingen. So kennen wir es ja auch aus der Praxis. Die Zeit zwischen Anschlag und dem vollstĂ€ndigen Abklingen stellt dabei ein Maß fĂŒr das Sustain dar.
  4. Bekanntermaßen kann Energie nicht vernichtet werden. Wo bleiben also unsere 10%? Antwort: Dieser Teil der Welle wandert durch den Endpunkt in das darunterliegende Material (hier Korpus oder Hals) und breitet sich dort als Welle aus. Das sich hierbei die Ausbreitungsgeschwindigkeit verĂ€ndert, liegt in der Natur der Sache, denn die Phasengeschwindigkeit der Welle ist eine materialabhĂ€ngige GrĂ¶ĂŸe.
    Diese Verhalten gilt fĂŒr beide Endpunkte der Saite. Im Korpus breiten sich also zwei Wellen von unterschiedlichen Stellen aus.

    Betrachten wir aber weiterhin nur unsere 10%-Welle. Ein Teil dieser Welle wird irgendwann am entgegengesetzten Endpunkt ankommen. Auch hier findet sie wieder einen Reflexionsfaktor vor. Da der Punkt jetzt in entgegengesetzter Richtung durchlaufen wird, muß nicht zwingend der gleiche Reflexionsfaktor vorliegen. In jedem Fall wird wieder eine Aufteilung der Welle erfolgen. Der (vermutlich) grĂ¶ĂŸte Teil wird wieder in den Korpus/Hals reflektiert und ein kleinere Teil gelangt zurĂŒck auf die Saite. Ob sich die Überlagerung der Wellen auf der Saiten dann als VerstĂ€rkung oder DĂ€mpfung bemerkbar macht, hĂ€ngt entscheidend von der Laufzeit der Wellen und damit von Konstruktion und Material von Korpus und Hals ab.

    Stimmen die AbstĂ€nde zwischen den Endpunkten im Korpus und die LĂ€nge der Welle ĂŒberein, so kann sich auch im Korpus, wie von Professor Fleischer und Dr. Russel nachgewiesen, eine abklingende stehenden Welle ausbilden.
  5. Bisher sind wir nur von zwei "Störstellen" (Endpunkte) ausgegangen. In der Praxis werden im Korpus aber erheblich mehr Störstellen vorhanden sein. Jede Fuge oder Verleimung stellt so eine Störstelle dar und sorgt fĂŒr Reflexionen. Auch an den RĂ€ndern des Materials treten Reflexionen auf.

    Allen Reflexionsfaktoren ist gemein, daß sie frequenzabhĂ€ngig sind. Man kann hier durchaus Analogien zu den Gesetzen der Optik finden, denn auch hier liegt eine Wellenausbreitung vor.

    Im Gegensatz zur Saite wird in Korpus und Hals also eine große Zahl von Wellen verschiedener Amplitude und Ausbreitungsrichtung vorhanden sein. Sie stellen ein Maß fĂŒr den Energieverlust dar, den die schwingende Saite erleidet.

    Die Energie dieser Korpuswellen wird mit jeder Reflexion der Saitenschwingung grĂ¶ĂŸer. Jetzt stellt sich die Frage, was mit dieser Energie geschieht? Wird die Gitarre gar irgendwann explodieren? GlĂŒcklicherweise ist das nicht der Fall!
  6. Der schwingende Korpus verliert, Àhnlich wie die schwingende Saite, seine Energie. Dieses geschieht auf zweierlei Weise:
    • An den RĂ€ndern regt der Korpus die umgebende Luft zum Schwingen an. Folge: Es entstehen in der Luft Schallwellen, die wir hören können.
    • Da im Zuge der Ausbreitung einer Welle immer Teilchen bewegt werden, muß hier Arbeit geleistet werden, um die MassentrĂ€gheit und die Reibung zu ĂŒberwinden. Die dazu notwendige Energie wird dann in WĂ€rme umgesetzt.
Zusammenfassung:

Aus Sicht der Saite kann man sagen:
  1. Die schwingende Saite gibt ĂŒber Sattel und Steg Energie an den Korpus ab.
  2. Nur ein kleiner Teil der Korpusschwingungen gelangt wieder zurĂŒck auf die Saite und wirkt, je nach Phasenlage, dĂ€mpfend oder verstĂ€rkend.
Aus der Sicht des Korpus kann man sagen:
  1. Angeregt durch die nicht reflektierten Teile der Saitenschwingung entsteht eine Vielzahl von Wellen mit unterschiedlicher Ausbreitungsrichtung.
  2. Immer dann, wenn sich aufgrund von Reflexionen im Korpus eine stehende Welle ergibt, liegt eine Korpusresonanz vor. Auf dieser Frequenz wird die Saitenschwingung besonders stark gedÀmpft.
  3. MaterialgrenzflĂ€chen, wie der Hals-Korpus-Übergang, stellen Störstellen dar, die fĂŒr Reflexionen sorgen.
  4. Der schwingende Korpus gibt seine Energie zum grĂ¶ĂŸten Teil in Form von Schallenergie ab. Nur ein geringer Teil wird in thermische Energie umgesetzt oder gelangt zurĂŒck auf die Saite.
  5. Die Ausbreitung der verschiedenen Wellen im Korpus lassen diesen aus Sicht der Saite als Filter erscheinen, der die Schwingung in AbhÀngigkeit der Frequenz dÀmpft oder verstÀrkt.
Egal ob geleimt oder geschraubt, stellt die Verbindung des Halses mit dem Korpus eine Störstelle dar. Die von mir gemachten Betrachtungen sind jedoch nur qualitativer Art. Wie stark der Einfluß des Neck-Joint tatsĂ€chlich ist, kann man so nicht ohne weiteres festlegen. Vermutlich ist er relativ groß! Ob der Unterschied der beiden Verbindungen indes von Signifikanz ist, darf meiner Meinung nach zu Recht bezweifelt werden, wie man anhand verschiedener Instrumente auch belegen kann.

Wenn es einen Unterschied gibt, so wird er sich nur im höheren Frequenzbereich abspielen. Der Übergang Holz-Holz oder Holz-Leim-Holz dĂŒrfte erst dann problematisch werden, wenn die WellenlĂ€nge in den Bereich der Breite dieser ÜbergĂ€nge kommt. So hohe Frequenzen wird eine Gitarre jedoch kaum erzeugen können.

Abschließend noch ein paar Bemerkungen zum Sustain:

Die Saite verliert ihre Energie, wie schon erwĂ€hnt an den Korpus, aber auch in Form von Schallwellen an die Umgebung. Als letztes muß hier noch der magnetische Tonabnehmer erwĂ€hnt werden, gegen dessen Kraftfeld die Saite Arbeit aufbringen muß. Hier wird die mechanische Energie also durch Induktion in elektrische Energie umgesetzt.

Ulf
 
DerOnkel":1f4a4v6p schrieb:
Man kann jede Saite als ein Filter auffassen, welches
Ulf

wars ein Vertipper oder eine theoretische Sache?
da ja jede Saite ihr eigenes Volumen hat (klar..wÀr dann auch reziprok, bei genauerer Betrachtung)

das fÀnd ich interressant

greez
 
alien":wjkrtcep schrieb:
wars ein Vertipper oder eine theoretische Sache?
Nein, das war kein Vertipper! Wie Du diesem Beitrag entnehmen kannst, existieren fĂŒr jede Saite mindestens zwei Kammfilter, die durch die relative Tonabnehmerposition und -breite charakterisiert werden.

Dazu kommen dann noch vergleichbare Kammfilter, die von der relativen Anschlagposition und der relativen Breite des Anschlages abhÀngig sind.

Das Ganze ist also ein ziemlich komplizierte Angelegenheit.

Ulf
 

Beliebte Themen

ZurĂŒck
Oben Unten